Gloria Bender to present Seminar

Gloria Bender will present at the Seminar Monday November 13 at 1:15pm in Room 114 of the W. A. Baker Chemistry Research Building (CRB). Ms. Bender’s presentation title, abstract, and biographical sketch are below.

Title: Decision Support in the Real World:  QED Never Is! Bender headshot_2016
Author: Gloria Bender
Location: W. A. Baker Chemistry Research Building (CRB) Room 114
Date: Monday, November 13
Time: 1:15pm – 2:15pm

Abstract:  Advanced analytics, stochastic modeling, operations research tools are all very powerful and can provide elegant solutions to complex problems.  However, many of the problems working IEs face involve getting good data for use in our models to  produce elegant solutions. And, once we have our elegant solution, how do we promote the value to skeptical decision makers. Ms. Bender will discuss some of these challenges and how her consulting company addresses them.  She will look forward to an open discussion of potential ways IE’s can leverage new technologies to address these practical problems.

Biographical Sketch: Ms. Bender is an industrial engineer with over 30 years of experience in operations and facility capacity analyses, conceptual design, and expansion planning. She is co-founder and co-owner of TransSolutions, a 25-person transportation and aviation consulting firm based in Fort Worth, with offices in Washington DC and Atlanta. She is responsible for establishment of TransSolutions’ landside planning consulting practice, including development of processes, protocols and systems to serve passengers, their ground transportation vehicles, and their luggage in their journey through airports.  She championed development of the Operational Excellence Consulting practice in 2009, using TransSolutions’ strong advanced analytics and modeling capabilities coupled with the principals of Lean to improve the effectiveness of various enterprises worldwide. Ms. Bender currently serves most projects as the Principal-in-charge (PIC), responsible for overall project quality and client satisfaction, and she occasionally serves projects as the working project manager. In addition to her work at hundreds of airports worldwide, her projects also include supporting the redevelopment of the New York World Trade Center, estimating viewership for CNN Airport Network, and recommending enhancements to the computerized maintenance management system used by the US Navy. Ms. Bender actively supports the Airport Cooperative Research Program (ACRP), a program funded through the FAA and administered by the Transportation Research Board.  She has served as a research panel chair, a research contributor on four projects, and was the Principal Investigator for Report 55: Passenger Level of Service and Spatial Planning for Airport Terminals.  In January 2016, Ms. Bender was appointed by the Secretary of the Department of Transportation to serve on the ACRP Oversight Committee. Ms. Bender holds both an M.S. and B.S. in Industrial Engineering from the University of Texas at Arlington. She is a Fellow in the Institute of Industrial and Systems Engineers, a Member of the Council of Industrial and Systems Engineers, former Chair of the Airports Council International – North American World Business Partners Board and lectures at the UC Berkeley Airport Planning Conference. Since 2013, Ms. Bender has also been a member of the Transportation Security Administration Planning Guidelines and Planning Standards (PGDS) Industry Working Group (IWG).

 

-Posted by Jay Rosenberger

Jay Correa “Safety J” to present Seminar

Jay Correa will present at the Seminar Wednesday October 30 at 1:15pm in Room 114 of the W. A. Baker Chemistry Research Building (CRB).  Mr. Correa’s presentation title, abstract, and biographical sketch are below.

Safety J profile pic

 

Title: Safety – Engineering Solutions Beyond Compliance
Author: Jay Correa
Location: W. A. Baker Chemistry Research Building (CRB) Room 114
Date: Monday, October 30
Time: 1:15pm – 2:15pm

Abstract: OSHA and other regulatory agencies lay out the requirements or guidelines that employers in different industries should follow to meet the minimum requirements for compliance.  Being in compliance with regulatory requirements not only helps an employer to avoid citations but should also, theoretically, facilitate the employer’s ability to provide a safe work place for employees.  Many individuals and companies encounter difficulties meeting compliance as a result of regulations stating “what” is necessary to comply but not “how”.  As a result, an employer may meet regulatory requirements but not create a safe working environment or process. The engineering design process is a methodical and systematic approach to solving challenging problems or issues in manufacturing, construction and other industries.  Taking an engineering approach to Safety can help individuals overcome the challenge of not only meeting regulatory requirements but create a safe work environment that exceeds compliance.  The presentation will illustrate the problem solving approach that was used to solve an issue encountered in one aspect of a facility’s Emergency Action Plan.

Biographical Sketch: Jay Correa, “Safety J”,  was born in Big Spring, Texas, where he enjoyed the first six years of his life as an only child.  He grew up to be a voracious reader and eventually, as his siblings would tell of it- an overwhelmingly loving and protective brother, uncle, father to his son and partner to his girlfriend.  Jay enjoyed several years at Texas Tech University pursuing his passions in Spanish poetry and Industrial Engineering. Since leaving Texas Tech he has worked for companies in manufacturing, pharmaceutical and oil/gas industries and provided consulting or bilingual training services to small and medium sized companies. His goal, for more than 12 years now, has been to help develop the safest and most safety-conscientious people possible.  Somewhere along the way, people nicknamed him “Safety J”, their safety superhero – a nickname he strives to be deserving of everyday.

 

-Posted by Jay Rosenberger

Dr. Irina Dolinskaya to present Seminar

Dr. Irina Dolinskaya from the National Science Foundation will present at the Seminar Wednesday September 27 at 1:15pm in Room 101 of College Hall (CH).  Dr. Dolinskaya’s presentation title, abstract, and biographical sketch are below.

dolira3 (2)

Title: Navigating NSF:  Funding Opportunities, Proposal Preparation, and the Merit Review Process

 

Author: Dr. Irina Dolinskaya

Location: College Hall (CH) Room 101

Date: Wednesday, September 27

Time: 1:15pm – 2:15pm

Abstract: The first part of this talk will give an overview of Dr. Dolinskaya’s research on adaptive modeling and solution approaches with applications to humanitarian logistics, optimal vessel navigation and electric vehicle routing. The second part of the presentation will focus on the funding opportunities offered by the Division of Civil, Mechanical & Manufacturing Innovation within the disciplinary programs and through crosscutting initiatives across the National Science Foundation. This presentation will describe opportunities that are relevant to the operation research, industrial engineering, and dynamics and controls communities. Operation Engineering (OE) and Dynamics, Controls and Systems Diagnostics (DCSD) programs, as well as programs targeted toward junior investigators will be discussed. The talk will also describe guidelines for proposal preparation and NSF’s Intellectual Merit and Broader Impacts criteria.

Bio: Dr. Irina Dolinskaya is an associate program director at the National Science Foundation (NSF) in the Division of Civil, Mechanical & Manufacturing Innovation (CMMI). Dr. Dolinskaya services Operation Engineering (OE) and Dynamics, Control and Systems Diagnostics (DCSD) programs. Prior to joining NSF, Irina Dolinskaya was a faculty in the Industrial Engineering and Management Sciences department at Northwestern University. She obtained M.S. and Ph.D. degrees in Industrial and Operations Engineering from the University of Michigan, and B.S. degree in Industrial Engineering from the University of Florida.

Dr. Irina Dolinskaya’s research is in the field of transportation science and logistics with focus on adaptive modeling and solution approaches to integrate dynamic real-time information. Her current primary applications are in humanitarian logistics, optimal vessel performance, and    electric vehicle routing.

Professor Dolinskaya is the winner of the INFORMS Transportation Science & Logistics Society Dissertation Prize and the 2008 recipient of the Bonder Scholarship for Applied Operations Research in Military Applications. She has also been recognized for her teaching with IEMS Graduate Teaching Award (2011) and Northwestern Associated Student Government Faculty Honor Roll (2012), as well as for her advising with Cole-Higgins Award for Excellence in Advising (2014).

 

-Posted by Jay Rosenberger

Dr. Dongqing Wang to present Seminar

Dr. Dongqing Wang from Qingdao University in Qingdao, China will present at the first Seminar of the semester Wednesday September 6 at 2:00pm in Room 114 for the W. A. Baker Chemistry Research Building (CRB). Dr. Wang’s presentation title, abstract, and biographical sketch are below.

Title: Block-oriented Nonlinear System Identification—-Standard Least Square Methods and Least Square Methods for a Block-Oriented System
Author: Dr. Dongqing WangPicture2011-DQ WangLocation: W. A. Baker Chemistry Research Building (CRB) Room 114
Date: Wednesday, September 6
Time: 2:00pm – 3:00pm

Abstract: System parameter identification has been a significant research topic due to its wide application in fault diagnosis, signal processing, process control and economic fields. In this presentation, the standard least squares (LS) method is first introduced. Secondly, least squares methods for block-oriented systems is introduced, including the over-parametrization based least squares (OP-LS) method, the hierarchical least squares (H-LS) method and the key term separation principle based least squares (KT-LS) method. The mentioned methods are applied to Hammerstein systems, Wiener systems, and Hammerstein-Wiener systems. Finally, the future research proposal is given related to the compressive sensing based identification methods. The main contributions are the proposed framework of the hierarchical least squares based identification method for block-oriented systems by using the hierarchical identification principle, and the presented auxiliary model based key term separation principle based least squares for block-oriented systems.

Biographical Sketch: Dr. Dongqing Wang was born in Shenyang, Liaoning Province, China. She received B.S. and M.S. degrees from the Department of Electrical Engineering, Shandong University (Jinan, China) in 1986 and 1988, respectively. She joined the College of Automation Engineering, Qingdao University (Qingdao, China) as a faculty member since 1988. During work with Qingdao University, she received her Ph.D. degree from the School of Electrical Engineering and Automation, Tianjin University (Tianjin, China) in 2006. She was a Visiting Scholar in the Department of Electrical and Computer Engineering at the University of Tennessee (Knoxville, USA) from August 2004 to February 2005. Since December 2010, she has been a Full Professor in the College of Automation Engineering at Qingdao University, Qingdao, China. Her current research interests include process modeling and control, system identification, parameter estimation, Robot Path Planning, and Wireless Power Transfer. She has published over 50 papers on modeling and identification as the first author. She has won 5 research awards from the Chinese government and best paper award from the European Association for Signal Processing as the first author, she received more than ten funded projects from the NSF of China government and industrial field as a PI. She is a Recipient of Special government allowances of the State Council. She was ranked as the 2nd tier professor by the Ministry of Education in P.R China.

 

-Posted by Jay Rosenberger

Dr. Chanhaeng Rhee to present Seminar

Dr. Chanhaeng Rhee from the University of Texas Southwestern Medical Center in Dallas will present at the Seminar Monday April 24 at 1:15pm in Nedderman Hall 106. Dr. Rhee’s presentation title, abstract, and biographical sketch are below. 

Title: Improving Health Outcomes through Systems Engineering

Author: Dr. Chanhaeng Rhee

Location: Nedderman Hall Room 106
Date: Monday, April 24
Time: 1:15pm – 2:15pm

Abstract: In 2000 and 2001, the Institute of Medicine (IOM) issued two reports, “To Err Is Human” and “Crossing the Quality Chasm”. The first report estimated systems failures in healthcare delivery were responsible for at least 98,000 deaths each year. The second report revealed a wide “chasm” between the quality of care the health system should be capable of delivering today. In 2005, National Academy of Engineering and Institute of Medicine issued a report “Building a Better Delivery System: a New Engineering/Health Care Partnership”. This report was to provide a framework and action for a systems approach to healthcare delivery based on a partnership between engineers and health care professionals. I would like to demonstrate 2 cases of use of systems engineering tools to improve patient cares in the hospital (“Viewing Prevention of Catheter-Associated Urinary Tract Infection as a System: Using Systems Engineering and Human Factors Engineering in a Quality Improvement Project in an Academic Medical Center”) and outpatient setting (“Sustainable Self-Management & Elevating Wellness for Persons with Diabetes through Optimizing the Chronic Care Model”).

Biographical Sketch: Dr. Chanhaeng Rhee is an Endocrinology Specialist in Dallas, Texas. He graduated from Boston University with a BS in chemistry in 1992, from Kyungpook National University College of Medicine with an MD in 2000 and from UT Dallas with an MBA in 2012. He completed his residency at St. Elizabeth Health Center in 2004 in internal medicine and a fellowship at the University of Texas Southwestern Medical Center in 2007 in endocrinology and metabolism. Dr. Rhee is a Medical Director for Diabetes Management Program at UT Southwestern Medical Center and a Quality Officer at UT Southwestern Medical Center. Dr. Rhee affiliates with many hospitals including  William P. Clements Jr. University Hospital, Zale Lipshy University Hospital,  Parkland Health and Hospital System, and cooperates with other doctors and specialists in the medical group at UT Southwestern Medical Center in Dallas. He is a member of the American Diabetes Association, the Endocrine Society, the American Association of Clinical Endocrinologists, the Texas Medical Association, and the Dallas County Medical Society.

Speaker Seminar -This Thursday

Chen Kan from the Department of Industrial and Manufacturing Systems Engineering at Pennsylvania State University will present a Seminar this Thursday, April 7, at 1:30pm in the Rady Room, Nedderman Hall (NH) 601.  Mr. Kan’s presentation title, abstract, and biographical sketch are below.

 

All students and faculty are encouraged to attend. Because this is a Thursday seminar, there will be no attendance sheet for GTAs and on-campus GRAs. However, there will be a student meeting on Friday at which attendance will be recorded. More on the student meeting is forthcoming.

Chen Kan -1

Author: Chen Kan

Title: Dynamic Network Modeling and Analysis of Large-scale Internet of Things with Manufacturing and Healthcare Applications

Location: Rady Room, NH 601

Date: Thursday, April 6

Time: 1:30pm – 2:50pm

 

Abstract: Rapid advancement of sensing technology brings the proliferation of high-dimensional data with complex structures. Realizing full potentials of sensing data depends on the development of new sensor-based methods and tools for process monitoring and control, as well as data-driven system optimization. However, the complexity of sensing data poses significant challenges: 1) Distributed sensing leads to multi-channel signals, which show high levels of nonlinear and nonstationary behaviors in the presence of extraneous noises. 2) Advanced imaging technology leads to 2-D, 3-D or higher dimensional functional images (i.e., dynamic and time-varying), which contain rich information about the underlying processes. 3) Internet of Things connects large amounts of machines in digital manufacturing, as well as human subjects in smart and connected health. This gives rise to big and networked data that call for next-generation methodologies for system informatics and control. The goal of my research is to develop innovative sensor-based methodologies for modeling, monitoring and optimization of large-scale complex systems. Specifically, my research focuses on the development of nonlinear and stochastic network models for process monitoring and control. This research will enable and assist in 1) the handling of massive, complex data generated from advanced sensing systems in manufacturing and healthcare settings; 2) the extraction of pertinent information about system dynamics; and 3) the exploitation of acquired knowledge for decision making and performance optimization.

 

Biographical Sketch: Chen Kan is currently a Ph.D. candidate in the Department of Industrial and Manufacturing Engineering, the Pennsylvania State University. His research focuses on wireless sensing systems and network theory for large-scale IOT-based monitoring, modeling and control of complex systems, with applications for advanced manufacturing and smart health. He was the Entrepreneurial Lead of NSF I-Corps Team of the Mobile E-network Smart Health (MESH) project in 2014. He has published multiple papers in top journals, including Journal of Manufacturing Systems, Quality and Reliability Engineering International, Computers in Biology and Medicine, IEEE Journal of Biomedical and Health Informatics, and IEEE Transactions on Automation Science and Engineering.

Job/Internship Opportunity: Industrial Engineering Undergraduate Students


Local Food inspection company looking for a recent IE grad to be Day Shift production manager

Requirements:
Undergrad students preferred…December 2016 or May 2017 graduates ONLY
Has to be able to work in the US without sponsorship
MUST be fluent in both English & Spanish

Contact Kye Luker at kluker@flexxray.com

Industrial, Manufacturing, & Systems Engineering Spring 2017 Seminar Series Begins Today with Speaker: Dr. Michael Hahsler

Dissimilarity Plots: A Visual Exploration Tool for Partitional Clustering

 

Date:  Monday, February 13, 2017

Time:  1:15 p.m. – 2:15 p.m.

Location:  Nedderman Hall Room 106

 

Abstract: Cluster analysis tries to uncover structure in data by assigning each object in the data set to a group (called cluster) so that objects from the same cluster are more similar to each other than to objects from other clusters. Exploring the cluster structure and assessing the quality of the cluster solution have been a research topic since the invention of cluster analysis. This is especially important since all popular cluster algorithms produce a clustering even for data without a “cluster” structure. Many visualization techniques to judging the quality of a clustering and to explore the cluster structure were developed, but they all suffer from certain restrictions. For example, dendrograms cannot be used for non-hierarchical partitions, silhouette plots provide only a diagnostic tool without the ability to explore structure, data dimensionality may render projection-based methods less useful, and graph-based representations hide the internal structure of clusters. In this talk we introduce a new visualization technique called dissimilarity plots which is based on solving the combinatorial optimization problem of seriation for (near) optimal cluster and object placement in matrix shading. Dissimilarity plots are not affected by data dimensionality, allow the user to directly judge cluster quality by visually analyzing the micro-structure within clusters, while they make misspecification of the used number of clusters instantly apparent. Dissimilarity plots are implemented in the R extension package seriation.
Biographical Sketch: Dr. Michael Hahsler is assistant professor of Engineering Management, Information, and Systems (EMIS), Lyle School of Engineering, Southern Methodist University (SMU). He also holds a courtesy appointment with the Department of Computer Science and Engineering, and an adjunct appointment with the Department of Clinical Sciences at UT Southwestern Medical Center. He received his Ph.D. in business informatics from the Vienna University of Economics and Business, Austria, where he worked as an assistant professor and core researcher at the Research Institute for Computational Methods. Dr. Hahsler’s research focuses on methods used in the interdisciplinary field of data science including data mining, data visualization, data streams and combinatorial optimization with applications in bioinformatics, healthcare analytics, quantitative marketing, earth sciences and other engineering disciplines. He has published more than 60 papers in peer-reviewed international journals and conference proceedings and has organized several workshops. He also currently serves as editor of the Journal of Statistical Software, the secretary of the INFORMS Data Mining Section and is the principal developer of several popular data mining related extension packages for R, a free software environment for statistical computing and graphics.seminar-series

All students and faculty are encouraged to attend.  Attendance is expected for GTAs and on-campus GRAs.

There will be signature sheets for GTA’s located in the room. Please sign in to note your attendance.

Engineering Career Fair

The spring Engineering Career Fair is approaching!

Tuesday, February 21

10 a.m.-3 p.m.

Maverick Activities Center

Dress professionally, bring your résumé, and come prepared to speak to potential future employers!

Carole Coleman will present a RÉSUMÉ WORKSHOP (Wednesday, February 8, 12-1 p.m., NH 105) and an INTERVIEW WORKSHOP (Wednesday, February 15, 12-1 p.m., NH 105) to help you prepare.

In addition, this year the list of companies scheduled to attend is fully online and available on mobile devices. It is filterable by major, type of job, and citizenship status and will be updated often. This will allow you to plan your visit to the career fair and learn more about the companies you want to work for, even as you’re standing in line at the event.

Find the list of companies at uta.engineering/career.

 A separate event for job-seekers, UTA’s All-Majors Job Fair, is scheduled for the following day, Wednesday, February 22, from 10 a.m.-3 p.m. in the MAC.careerfaircrowd